\( \newcommand{\ie}{i.e.} \newcommand{\eg}{e.g.} \newcommand{\etal}{\textit{et~al.}} \newcommand{\wrt}{w.r.t.} \newcommand{\bra}[1]{\langle #1 \mid} \newcommand{\ket}[1]{\mid #1\rangle} \newcommand{\braket}[2]{\langle #1 \mid #2 \rangle} \newcommand{\bigbra}[1]{\big\langle #1 \big\mid} \newcommand{\bigket}[1]{\big\mid #1 \big\rangle} \newcommand{\bigbraket}[2]{\big\langle #1 \big\mid #2 \big\rangle} \newcommand{\grad}{\boldsymbol{\nabla}} \newcommand{\divop}{\grad\scap} \newcommand{\pp}{\partial} \newcommand{\ppsqr}{\partial^2} \renewcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\trans}[1]{#1^\mr{T}} \newcommand{\dm}{\,\mathrm{d}} \newcommand{\complex}{\mathbb{C}} \newcommand{\real}{\mathbb{R}} \newcommand{\krondel}[1]{\delta_{#1}} \newcommand{\limit}[2]{\mathop{\longrightarrow}_{#1 \rightarrow #2}} \newcommand{\measure}{\mathbb{P}} \newcommand{\scap}{\!\cdot\!} \newcommand{\intd}[1]{\int\!\dm#1\: } \newcommand{\ave}[1]{\left\langle #1 \right\rangle} \newcommand{\br}[1]{\left\lbrack #1 \right\rbrack} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\tub}[1]{\left\{#1\right\}} \newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\evalat}[1]{\left.#1\right\vert} \newcommand*{\given}{\mid} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\figleft}{\em (Left)} \newcommand{\figcenter}{\em (Center)} \newcommand{\figright}{\em (Right)} \newcommand{\figtop}{\em (Top)} \newcommand{\figbottom}{\em (Bottom)} \newcommand{\captiona}{\em (a)} \newcommand{\captionb}{\em (b)} \newcommand{\captionc}{\em (c)} \newcommand{\captiond}{\em (d)} \newcommand{\newterm}[1]{\bf #1} \def\ceil#1{\lceil #1 \rceil} \def\floor#1{\lfloor #1 \rfloor} \def\1{\boldsymbol{1}} \newcommand{\train}{\mathcal{D}} \newcommand{\valid}{\mathcal{D_{\mathrm{valid}}}} \newcommand{\test}{\mathcal{D_{\mathrm{test}}}} \def\eps{\epsilon} \def\reta{\textnormal{$\eta$}} \def\ra{\textnormal{a}} \def\rb{\textnormal{b}} \def\rc{\textnormal{c}} \def\rd{\textnormal{d}} \def\re{\textnormal{e}} \def\rf{\textnormal{f}} \def\rg{\textnormal{g}} \def\rh{\textnormal{h}} \def\ri{\textnormal{i}} \def\rj{\textnormal{j}} \def\rk{\textnormal{k}} \def\rl{\textnormal{l}} \def\rn{\textnormal{n}} \def\ro{\textnormal{o}} \def\rp{\textnormal{p}} \def\rq{\textnormal{q}} \def\rr{\textnormal{r}} \def\rs{\textnormal{s}} \def\rt{\textnormal{t}} \def\ru{\textnormal{u}} \def\rv{\textnormal{v}} \def\rw{\textnormal{w}} \def\rx{\textnormal{x}} \def\ry{\textnormal{y}} \def\rz{\textnormal{z}} \def\rvepsilon{\mathbf{\epsilon}} \def\rvtheta{\mathbf{\theta}} \def\rva{\mathbf{a}} \def\rvb{\mathbf{b}} \def\rvc{\mathbf{c}} \def\rvd{\mathbf{d}} \def\rve{\mathbf{e}} \def\rvf{\mathbf{f}} \def\rvg{\mathbf{g}} \def\rvh{\mathbf{h}} \def\rvu{\mathbf{i}} \def\rvj{\mathbf{j}} \def\rvk{\mathbf{k}} \def\rvl{\mathbf{l}} \def\rvm{\mathbf{m}} \def\rvn{\mathbf{n}} \def\rvo{\mathbf{o}} \def\rvp{\mathbf{p}} \def\rvq{\mathbf{q}} \def\rvr{\mathbf{r}} \def\rvs{\mathbf{s}} \def\rvt{\mathbf{t}} \def\rvu{\mathbf{u}} \def\rvv{\mathbf{v}} \def\rvw{\mathbf{w}} \def\rvx{\mathbf{x}} \def\rvy{\mathbf{y}} \def\rvz{\mathbf{z}} \def\erva{\textnormal{a}} \def\ervb{\textnormal{b}} \def\ervc{\textnormal{c}} \def\ervd{\textnormal{d}} \def\erve{\textnormal{e}} \def\ervf{\textnormal{f}} \def\ervg{\textnormal{g}} \def\ervh{\textnormal{h}} \def\ervi{\textnormal{i}} \def\ervj{\textnormal{j}} \def\ervk{\textnormal{k}} \def\ervl{\textnormal{l}} \def\ervm{\textnormal{m}} \def\ervn{\textnormal{n}} \def\ervo{\textnormal{o}} \def\ervp{\textnormal{p}} \def\ervq{\textnormal{q}} \def\ervr{\textnormal{r}} \def\ervs{\textnormal{s}} \def\ervt{\textnormal{t}} \def\ervu{\textnormal{u}} \def\ervv{\textnormal{v}} \def\ervw{\textnormal{w}} \def\ervx{\textnormal{x}} \def\ervy{\textnormal{y}} \def\ervz{\textnormal{z}} \def\rmA{\mathbf{A}} \def\rmB{\mathbf{B}} \def\rmC{\mathbf{C}} \def\rmD{\mathbf{D}} \def\rmE{\mathbf{E}} \def\rmF{\mathbf{F}} \def\rmG{\mathbf{G}} \def\rmH{\mathbf{H}} \def\rmI{\mathbf{I}} \def\rmJ{\mathbf{J}} \def\rmK{\mathbf{K}} \def\rmL{\mathbf{L}} \def\rmM{\mathbf{M}} \def\rmN{\mathbf{N}} \def\rmO{\mathbf{O}} \def\rmP{\mathbf{P}} \def\rmQ{\mathbf{Q}} \def\rmR{\mathbf{R}} \def\rmS{\mathbf{S}} \def\rmT{\mathbf{T}} \def\rmU{\mathbf{U}} \def\rmV{\mathbf{V}} \def\rmW{\mathbf{W}} \def\rmX{\mathbf{X}} \def\rmY{\mathbf{Y}} \def\rmZ{\mathbf{Z}} \def\ermA{\textnormal{A}} \def\ermB{\textnormal{B}} \def\ermC{\textnormal{C}} \def\ermD{\textnormal{D}} \def\ermE{\textnormal{E}} \def\ermF{\textnormal{F}} \def\ermG{\textnormal{G}} \def\ermH{\textnormal{H}} \def\ermI{\textnormal{I}} \def\ermJ{\textnormal{J}} \def\ermK{\textnormal{K}} \def\ermL{\textnormal{L}} \def\ermM{\textnormal{M}} \def\ermN{\textnormal{N}} \def\ermO{\textnormal{O}} \def\ermP{\textnormal{P}} \def\ermQ{\textnormal{Q}} \def\ermR{\textnormal{R}} \def\ermS{\textnormal{S}} \def\ermT{\textnormal{T}} \def\ermU{\textnormal{U}} \def\ermV{\textnormal{V}} \def\ermW{\textnormal{W}} \def\ermX{\textnormal{X}} \def\ermY{\textnormal{Y}} \def\ermZ{\textnormal{Z}} \def\vzero{\boldsymbol{0}} \def\vone{\boldsymbol{1}} \def\vmu{\boldsymbol{\mu}} \def\vtheta{\boldsymbol{\theta}} \def\va{\boldsymbol{a}} \def\vb{\boldsymbol{b}} \def\vc{\boldsymbol{c}} \def\vd{\boldsymbol{d}} \def\ve{\boldsymbol{e}} \def\vf{\boldsymbol{f}} \def\vg{\boldsymbol{g}} \def\vh{\boldsymbol{h}} \def\vi{\boldsymbol{i}} \def\vj{\boldsymbol{j}} \def\vk{\boldsymbol{k}} \def\vl{\boldsymbol{l}} \def\vm{\boldsymbol{m}} \def\vn{\boldsymbol{n}} \def\vo{\boldsymbol{o}} \def\vp{\boldsymbol{p}} \def\vq{\boldsymbol{q}} \def\vr{\boldsymbol{r}} \def\vs{\boldsymbol{s}} \def\vt{\boldsymbol{t}} \def\vu{\boldsymbol{u}} \def\vv{\boldsymbol{v}} \def\vw{\boldsymbol{w}} \def\vx{\boldsymbol{x}} \def\vy{\boldsymbol{y}} \def\vz{\boldsymbol{z}} \def\evalpha{\alpha} \def\evbeta{\beta} \def\evepsilon{\epsilon} \def\evlambda{\lambda} \def\evomega{\omega} \def\evmu{\mu} \def\evpsi{\psi} \def\evsigma{\sigma} \def\evtheta{\theta} \def\eva{a} \def\evb{b} \def\evc{c} \def\evd{d} \def\eve{e} \def\evf{f} \def\evg{g} \def\evh{h} \def\evi{i} \def\evj{j} \def\evk{k} \def\evl{l} \def\evm{m} \def\evn{n} \def\evo{o} \def\evp{p} \def\evq{q} \def\evr{r} \def\evs{s} \def\evt{t} \def\evu{u} \def\evv{v} \def\evw{w} \def\evx{x} \def\evy{y} \def\evz{z} \def\mA{\boldsymbol{A}} \def\mB{\boldsymbol{B}} \def\mC{\boldsymbol{C}} \def\mD{\boldsymbol{D}} \def\mE{\boldsymbol{E}} \def\mF{\boldsymbol{F}} \def\mG{\boldsymbol{G}} \def\mH{\boldsymbol{H}} \def\mI{\boldsymbol{I}} \def\mJ{\boldsymbol{J}} \def\mK{\boldsymbol{K}} \def\mL{\boldsymbol{L}} \def\mM{\boldsymbol{M}} \def\mN{\boldsymbol{N}} \def\mO{\boldsymbol{O}} \def\mP{\boldsymbol{P}} \def\mQ{\boldsymbol{Q}} \def\mR{\boldsymbol{R}} \def\mS{\boldsymbol{S}} \def\mT{\boldsymbol{T}} \def\mU{\boldsymbol{U}} \def\mV{\boldsymbol{V}} \def\mW{\boldsymbol{W}} \def\mX{\boldsymbol{X}} \def\mY{\boldsymbol{Y}} \def\mZ{\boldsymbol{Z}} \def\mBeta{\boldsymbol{\beta}} \def\mPhi{\boldsymbol{\Phi}} \def\mLambda{\boldsymbol{\Lambda}} \def\mSigma{\boldsymbol{\Sigma}} \def\gA{\mathcal{A}} \def\gB{\mathcal{B}} \def\gC{\mathcal{C}} \def\gD{\mathcal{D}} \def\gE{\mathcal{E}} \def\gF{\mathcal{F}} \def\gG{\mathcal{G}} \def\gH{\mathcal{H}} \def\gI{\mathcal{I}} \def\gJ{\mathcal{J}} \def\gK{\mathcal{K}} \def\gL{\mathcal{L}} \def\gM{\mathcal{M}} \def\gN{\mathcal{N}} \def\gO{\mathcal{O}} \def\gP{\mathcal{P}} \def\gQ{\mathcal{Q}} \def\gR{\mathcal{R}} \def\gS{\mathcal{S}} \def\gT{\mathcal{T}} \def\gU{\mathcal{U}} \def\gV{\mathcal{V}} \def\gW{\mathcal{W}} \def\gX{\mathcal{X}} \def\gY{\mathcal{Y}} \def\gZ{\mathcal{Z}} \def\sA{\mathbb{A}} \def\sB{\mathbb{B}} \def\sC{\mathbb{C}} \def\sD{\mathbb{D}} \def\sF{\mathbb{F}} \def\sG{\mathbb{G}} \def\sH{\mathbb{H}} \def\sI{\mathbb{I}} \def\sJ{\mathbb{J}} \def\sK{\mathbb{K}} \def\sL{\mathbb{L}} \def\sM{\mathbb{M}} \def\sN{\mathbb{N}} \def\sO{\mathbb{O}} \def\sP{\mathbb{P}} \def\sQ{\mathbb{Q}} \def\sR{\mathbb{R}} \def\sS{\mathbb{S}} \def\sT{\mathbb{T}} \def\sU{\mathbb{U}} \def\sV{\mathbb{V}} \def\sW{\mathbb{W}} \def\sX{\mathbb{X}} \def\sY{\mathbb{Y}} \def\sZ{\mathbb{Z}} \def\emLambda{\Lambda} \def\emA{A} \def\emB{B} \def\emC{C} \def\emD{D} \def\emE{E} \def\emF{F} \def\emG{G} \def\emH{H} \def\emI{I} \def\emJ{J} \def\emK{K} \def\emL{L} \def\emM{M} \def\emN{N} \def\emO{O} \def\emP{P} \def\emQ{Q} \def\emR{R} \def\emS{S} \def\emT{T} \def\emU{U} \def\emV{V} \def\emW{W} \def\emX{X} \def\emY{Y} \def\emZ{Z} \def\emSigma{\Sigma} \newcommand{\etens}[1]{\mathsfit{#1}} \def\etLambda{\etens{\Lambda}} \def\etA{\etens{A}} \def\etB{\etens{B}} \def\etC{\etens{C}} \def\etD{\etens{D}} \def\etE{\etens{E}} \def\etF{\etens{F}} \def\etG{\etens{G}} \def\etH{\etens{H}} \def\etI{\etens{I}} \def\etJ{\etens{J}} \def\etK{\etens{K}} \def\etL{\etens{L}} \def\etM{\etens{M}} \def\etN{\etens{N}} \def\etO{\etens{O}} \def\etP{\etens{P}} \def\etQ{\etens{Q}} \def\etR{\etens{R}} \def\etS{\etens{S}} \def\etT{\etens{T}} \def\etU{\etens{U}} \def\etV{\etens{V}} \def\etW{\etens{W}} \def\etX{\etens{X}} \def\etY{\etens{Y}} \def\etZ{\etens{Z}} \newcommand{\pdata}{p_{\rm{data}}} \newcommand{\ptrain}{\hat{p}_{\rm{data}}} \newcommand{\Ptrain}{\hat{P}_{\rm{data}}} \newcommand{\pmodel}{p_{\rm{model}}} \newcommand{\Pmodel}{P_{\rm{model}}} \newcommand{\ptildemodel}{\tilde{p}_{\rm{model}}} \newcommand{\pencode}{p_{\rm{encoder}}} \newcommand{\pdecode}{p_{\rm{decoder}}} \newcommand{\precons}{p_{\rm{reconstruct}}} \newcommand{\laplace}{\mathrm{Laplace}} % Laplace distribution \newcommand{\E}{\mathbb{E}} \newcommand{\Ls}{\mathcal{L}} \newcommand{\R}{\mathbb{R}} \newcommand{\emp}{\tilde{p}} \newcommand{\lr}{\alpha} \newcommand{\reg}{\lambda} \newcommand{\rect}{\mathrm{rectifier}} \newcommand{\softmax}{\mathrm{softmax}} \newcommand{\sigmoid}{\sigma} \newcommand{\softplus}{\zeta} \newcommand{\KL}{D_{\mathrm{KL}}} \newcommand{\Var}{\mathrm{Var}} \newcommand{\standarderror}{\mathrm{SE}} \newcommand{\Cov}{\mathrm{Cov}} \newcommand{\normlzero}{L^0} \newcommand{\normlone}{L^1} \newcommand{\normltwo}{L^2} \newcommand{\normlp}{L^p} \newcommand{\normmax}{L^\infty} \newcommand{\parents}{Pa} % See usage in notation.tex. Chosen to match Daphne's book. \DeclareMathOperator*{\argmax}{arg\,max} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\Tr}{Tr} \let\ab\allowbreak \newcommand{\vxlat}{\vx_{\mr{lat}}} \newcommand{\vxobs}{\vx_{\mr{obs}}} \newcommand{\block}[1]{\underbrace{\begin{matrix}1 & \cdots & 1\end{matrix}}_{#1}} \newcommand{\blockt}[1]{\begin{rcases} \begin{matrix} ~\\ ~\\ ~ \end{matrix} \end{rcases}{#1}} \newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};} \)

Introduction

This note aims at deriving the evidence lower bound (ELBO) and motivate it using a Bayesian inference perspective. Here we consider an observed variable \(y\) and seek to infer the distribution over latent variables \(z\) given \(y\). That is to say, we want to find the posterior distribution over the latent variables,

\[ p(x|y) = \frac{p(y,x)}{p(y)} = \frac{p(y,x)}{\int p(y|x)p(x)\dm x}. \]

In general we cannot compute this distribution, and so we need to turn towards other methods like Markov Chain Monte Carlo, Importance Sampling, Variational Bayes (VB), etc.

It is within VB that we find the ELBO is an essential mathematical expression that allows for approximating the posterior distribution \(q(x|y)\approx p(x|y)\). It has been used successfully in many applications and machine learning methods such as Variational autoencoders (VAEs) kingma2014autoencoding. For a more in-depth explanation of VB and also the ELBO I suggest looking into excellent the pattern recognition book by Bishop bishop2006a and the review paper on variational inference blei2017a.

The ELBO

We will derive the ELBO from an inference perspective, i.e. we want to approximate \(p(x|y)\) with \(q(x|y;\theta)\). Here we explicitly parameterized \(q\) with \(\theta\) and we shall assume the flexibility of \(q\) is precisely defined by \(\theta\). The objective then is to find \(\theta\) such that \(q(x|y;\theta)\approx p(x|y)\). This requires some mathematical expression which tells us how to find such a \(\theta\) and the ELBO is one such expression. We denote the ELBO as \(\gL\) and as we will see it takes the following form,

\begin{equation} \label{eq:elbo} \gL = \E_{q(x|y;\theta)}\br{\ln{\frac{p(x,y)}{q(x|y;\theta)}}}, \end{equation}

and we shall see two different ways to derive that expression.

From the KL divergence

To measure closeness between \(q\) and \(p\) and consider the Kullback–Leibler (KL) divergence,

\begin{align*} \mr{KL}\br{q(x|y;\theta)|p(x|y)} &= -\int \ln{\frac{p(x|y)}{q(x|y;\theta)}} q(x|y;\theta)\dm x\\ & = -\br{ \int \ln{\frac{p(x,y)}{q(x|y;\theta)}} q(x|y;\theta)\dm x - \int \ln p(y) q(x|y;\theta)\dm x }\\ & = -\E_{q(x|y;\theta)}\br{\ln{\frac{p(x,y)}{q(x|y;\theta)}}} \dm x + \ln p(y), \end{align*}

which we rearrange to,

\[ \ln p(y) = \mr{KL}\br{q(x|y;\theta)|p(x|y)} + \E_{q(x|y;\theta)}\br{\ln{\frac{p(x,y)}{q(x|y;\theta)}}} = \mr{KL}\br{q(x|y)|p_{\theta}(x|y)} + \gL. \]

Because the KL-divergence is non-negative we identify \(\ln p(y)\ge\gL\), making \(\gL\) a lower bound on the evidence \(p(y)\), hence the name.

From maximizing the model evidence

As shown above there is a direct connection between the evidence \(p(y)\) and the ELBO \(\gL\) and we will here derive the expression of \(\gL\) directly from \(\ln p(y)\) using Jensen’s inequality,

\[ f(\E\br{x}) \le \E\br{f(x)}, \quad \text{for a convex function}~f, \] or \[ f(\E\br{x}) \ge \E\br{f(x)}, \quad \text{for a concave function}~f. \]

With this we can write,

\begin{align*} \ln p(y) &= \ln \int p(y|x)p(x) \dm x \\ &= \ln \int \frac{p(y,x)}{q(x|y;\theta)}q(x|y;\theta) \dm x \\ &\ge \E_{q(x|y;\theta)}\br{\ln\frac{p(y,x)}{q(x|y;\theta)}}, \end{align*}

which is exactly the expression in \ref{eq:elbo}

Related topics

The topics of VB and the ELBO, relates to a series of other topics some of which I will be making other notes about. Some of these topics include but is certainly not limited:

  • The expectation maximization (EM) algorithm
  • VAEs
  • Inference compilation le2016inference

And much, much more.